博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
ELK调优
阅读量:6150 次
发布时间:2019-06-21

本文共 10622 字,大约阅读时间需要 35 分钟。

做了几周的测试,踩了无数的坑,总结一下,全是干货,给大家分享~

一、ELK实用知识点总结

1、编码转换问题

这个问题,主要就是中文乱码。

input中的codec=>plain转码:

codec => plain {
charset => "GB2312"
}

将GB2312的文本编码,转为UTF-8的编码。

也可以在filebeat中实现编码的转换(推荐):

filebeat.prospectors:

  • input_type: log

paths:

  • c:\Users\Administrator\Desktop\performanceTrace.txt

encoding: GB2312

2、删除多余日志中的多余行

logstash filter中drop删除:

if ([message] =~ "^20.-\ task\ request,.,start\ time.*") {

#用正则需删除的多余行

drop {}

}

日志示例:

2018-03-20 10:44:01,523 [33]DEBUG Debug - task request,task Id:1cbb72f1-a5ea-4e73-957c-6d20e9e12a7a,start time:2018-03-20 10:43:59 #需删除的行

-- Request String :

{"UserName":"150466×××3","Pwd":"ZYjyh727","DeviceType":2,"DeviceId":"PC-20170525SADY","EquipmentNo":null,"SSID":"pc","RegisterPhones":null,"AppKey":"ab09d78e3b2c40b789ddfc81674bc24deac","Version":"2.0.5.3"} -- End

-- Response String :

{"ErrorCode":0,"Success":true,"ErrorMsg":null,"Result":null,"WaitInterval":30} -- End

3、grok处理多种日志不同的行

日志示例:

2018-03-20 10:44:01,523 [33]DEBUG Debug - task request,task Id:1cbb72f1-a5ea-4e73-957c-6d20e9e12a7a,start time:2018-03-20 10:43:59

-- Request String :

{"UserName":"150466×××3","Pwd":"ZYjyh727","DeviceType":2,"DeviceId":"PC-20170525SADY","EquipmentNo":null,"SSID":"pc","RegisterPhones":null,"AppKey":"ab09d78e3b2c40b789ddfc81674bc24deac","Version":"2.0.5.3"} -- End

-- Response String :

{"ErrorCode":0,"Success":true,"ErrorMsg":null,"Result":null,"WaitInterval":30} -- End

在logstash filter中grok分别处理3行:

match => {

"message" => "^20.-\ task\ request,.,start\ time\:%{TIMESTAMP_ISO8601:RequestTime}"

match => {

"message" => "^--\ Request\ String\ :\ {\"UserName\":\"%{NUMBER:UserName:int}\",\"Pwd\":\"(?<Pwd>.)\",\"DeviceType\":%{NUMBER:DeviceType:int},\"DeviceId\":\"(?<DeviceId>.)\",\"EquipmentNo\":(?<EquipmentNo>.),\"SSID\":(?<SSID>.),\"RegisterPhones\":(?<RegisterPhones>.),\"AppKey\":\"(?<AppKey>.)\",\"Version\":\"(?<Version>.)\"}\ --\ \End."

}

match => {

"message" => "^--\ Response\ String\ :\ {\"ErrorCode\":%{NUMBER:ErrorCode:int},\"Success\":(?<Success>[a-z]),\"ErrorMsg\":(?<ErrorMsg>.),\"Result\":(?<Result>.),\"WaitInterval\":%{NUMBER:WaitInterval:int}}\ --\ \End."

}
... 等多行

4、日志多行合并处理—multiline插件(重点)

示例:

①日志

2018-03-20 10:44:01,523 [33]DEBUG Debug - task request,task Id:1cbb72f1-a5ea-4e73-957c-6d20e9e12a7a,start time:2018-03-20 10:43:59

-- Request String :

{"UserName":"150466×××3","Pwd":"ZYjyh727","DeviceType":2,"DeviceId":"PC-20170525SADY","EquipmentNo":null,"SSID":"pc","RegisterPhones":null,"AppKey":"ab09d78e3b2c40b789ddfc81674bc24deac","Version":"2.0.5.3"} -- End

-- Response String :

{"ErrorCode":0,"Success":true,"ErrorMsg":null,"Result":null,"WaitInterval":30} -- End

②logstash grok对合并后多行的处理。合并多行后续都一样,如下:

filter {

 grok {

match => {  "message" => "^%{TIMESTAMP_ISO8601:InsertTime}\ .*-\ task\ request,.*,start\ time:%{TIMESTAMP_ISO8601:RequestTime}\n--\ Request\ String\ :\ \{\"UserName\":\"%{NUMBER:UserName:int}\",\"Pwd\":\"(?
.*)\",\"DeviceType\":%{NUMBER:DeviceType:int},\"DeviceId\":\"(?
.*)\",\"EquipmentNo\":(?
.*),\"SSID\":(?
.*),\"RegisterPhones\":(?
.*),\"AppKey\":\"(?
.*)\",\"Version\":\"(?
.*)\"\}\ --\ \End\n--\ Response\ String\ :\ \{\"ErrorCode\":%{NUMBER:ErrorCode:int},\"Success\":(?
[a-z]*),\"ErrorMsg\":(?
.*),\"Result\":(?
.*),\"WaitInterval\":%{NUMBER:WaitInterval:int}\}\ --\ \End" } }

}

在filebeat中使用multiline插件(推荐):

①介绍multiline

pattern:正则匹配从哪行合并;

negate:true/false,匹配到pattern 部分开始合并,还是不配到的合并。

match:after/before(需自己理解)

after:匹配到pattern 部分后合并,注意:这种情况最后一行日志不会被匹配处理;

before:匹配到pattern 部分前合并(推荐)。

②5.5版本之后(before为例)

filebeat.prospectors:

  • input_type: log

paths:

  • /root/performanceTrace*

fields:

type: zidonghualog

multiline.pattern: '.\"WaitInterval\":.--\ End'

multiline.negate: true

multiline.match: before

③5.5版本之前(after为例)

filebeat.prospectors:

  • input_type: log

paths:

  • /root/performanceTrace*

input_type: log

multiline:

pattern: '^20.*'

negate: true

match: after

在logstash input中使用multiline插件(没有filebeat时推荐):

①介绍multiline

pattern:正则匹配从哪行合并;

negate:true/false,匹配到pattern 部分开始合并,还是不配到的合并。

what:previous/next(需自己理解)

previous:相当于filebeat 的after;

next:相当于filebeat 的before。

②用法

input {

file {     path => ["/root/logs/log2"]     start_position => "beginning"     codec => multiline {          pattern => "^20.*"          negate => true          what => "previous"

}

}

}

在logstash filter中使用multiline插件(不推荐):

不推荐的原因:

filter设置multiline后,pipline worker会自动降为1;

5.5 版本官方把multiline 去除了,要使用的话需下载,下载命令如下:

/usr/share/logstash/bin/logstash-plugin install logstash-filter-multiline

示例:

filter {

multiline {

pattern => "^20.*"

negate => true

what => "previous"

}

}

5、logstash filter中的date使用

日志示例:

2018-03-20 10:44:01 [33]DEBUG Debug - task request,task Id:1cbb72f1-a5ea-4e73-957c-6d20e9e12a7a,start time:2018-03-20 10:43:59

date使用:

date {

match => ["InsertTime","YYYY-MM-dd HH:mm:ss "]   remove_field => "InsertTime"

}

注:match => ["timestamp" ,"dd/MMM/YYYY H:m:s Z"]

匹配这个字段,字段的格式为:日日/月月月/年年年年 时/分/秒 时区,也可以写为:match => ["timestamp","ISO8601"](推荐)

date介绍:

就是将匹配日志中时间的key替换为@timestamp的时间,因为@timestamp的时间是日志送到logstash的时间,并不是日志中真正的时间。

6、对多类日志分类处理(重点)

在filebeat的配置中添加type分类:

filebeat:

prospectors:

-

paths:

#- /mnt/data/WebApiDebugLog.txt*

  • /mnt/data_total/WebApiDebugLog.txt*

fields:

type: WebApiDebugLog_total

-

paths:

  • /mnt/data_request/WebApiDebugLog.txt*

#- /mnt/data/WebApiDebugLog.txt*

fields:

type: WebApiDebugLog_request

-

paths:

  • /mnt/data_report/WebApiDebugLog.txt*

#- /mnt/data/WebApiDebugLog.txt*

fields:

type: WebApiDebugLog_report

在logstash filter中使用if,可进行对不同类进行不同处理:

filter {

if [fields][type] == "WebApiDebugLog_request" {              #对request 类日志    if ([message] =~ "^20.*-\ task\ report,.*,start\ time.*") {             #删除report 行     drop {}            }       grok {        match => {"... ..."}          }

}

在logstash output中使用if:

if [fields][type] == "WebApiDebugLog_total" {

elasticsearch {        hosts => ["6.6.6.6:9200"]        index => "logstashl-WebApiDebugLog_total-%{+YYYY.MM.dd}"       document_type => "WebApiDebugLog_total_logs"

}

二、对ELK整体性能的优化

1、性能分析

服务器硬件Linux:1cpu4GRAM

假设每条日志250Byte。

分析:

①logstash-Linux:1cpu 4GRAM

每秒500条日志;

去掉ruby每秒660条日志;
去掉grok后每秒1000条数据。

②filebeat-Linux:1cpu 4GRAM

每秒2500-3500条数据;

每天每台机器可处理:24h60min60sec 3000250Byte=64,800,000,000Bytes,约64G。

③瓶颈在logstash从Redis中取数据存入ES,开启一个logstash,每秒约处理6000条数据;开启两个logstash,每秒约处理10000条数据(cpu已基本跑满);

④logstash的启动过程占用大量系统资源,因为脚本中要检查java、ruby以及其他环境变量,启动后资源占用会恢复到正常状态。

2、关于收集日志的选择:logstash/filter

没有原则要求使用filebeat或logstash,两者作为shipper的功能是一样的。

区别在于:

logstash由于集成了众多插件,如grok、ruby,所以相比beat是重量级的;

logstash启动后占用资源更多,如果硬件资源足够则无需考虑二者差异;
logstash基于JVM,支持跨平台;而beat使用golang编写,AIX不支持;
AIX 64bit平台上需要安装jdk(jre) 1.7 32bit,64bit的不支持;
filebeat可以直接输入到ES,但是系统中存在logstash直接输入到ES的情况,这将造成不同的索引类型造成检索复杂,最好统一输入到els 的源。

总结:

logstash/filter总之各有千秋,但是我推荐选择:在每个需要收集的日志服务器上配置filebeat,因为轻量级,用于收集日志;再统一输出给logstash,做对日志的处理;最后统一由logstash输出给els。

3、logstash的优化相关配置

可以优化的参数,可根据自己的硬件进行优化配置:

①pipeline线程数,官方建议是等于CPU内核数

默认配置 ---> pipeline.workers: 2;

可优化为 ---> pipeline.workers: CPU内核数(或几倍CPU内核数)。

②实际output时的线程数

默认配置 ---> pipeline.output.workers: 1;

可优化为 ---> pipeline.output.workers: 不超过pipeline线程数。

③每次发送的事件数

默认配置 ---> pipeline.batch.size: 125;

可优化为 ---> pipeline.batch.size: 1000。

④发送延时

默认配置 ---> pipeline.batch.delay: 5;

可优化为 ---> pipeline.batch.size: 10。

总结:

通过设置-w参数指定pipeline worker数量,也可直接修改配置文件logstash.yml。这会提高filter和output的线程数,如果需要的话,将其设置为cpu核心数的几倍是安全的,线程在I/O上是空闲的。

默认每个输出在一个pipeline worker线程上活动,可以在输出output中设置workers设置,不要将该值设置大于pipeline worker数。

还可以设置输出的batch_size数,例如ES输出与batch size一致。

filter设置multiline后,pipline worker会自动将为1,如果使用filebeat,建议在beat中就使用multiline,如果使用logstash作为shipper,建议在input中设置multiline,不要在filter中设置multiline。

Logstash中的JVM配置文件:

Logstash是一个基于Java开发的程序,需要运行在JVM中,可以通过配置jvm.options来针对JVM进行设定。比如内存的最大最小、垃圾清理机制等等。JVM的内存分配不能太大不能太小,太大会拖慢操作系统。太小导致无法启动。默认如下:

Xms256m#最小使用内存;

Xmx1g#最大使用内存。

4、引入Redis的相关问题

filebeat可以直接输入到logstash(indexer),但logstash没有存储功能,如果需要重启需要先停所有连入的beat,再停logstash,造成运维麻烦;另外如果logstash发生异常则会丢失数据;引入Redis作为数据缓冲池,当logstash异常停止后可以从Redis的客户端看到数据缓存在Redis中;

Redis可以使用list(最长支持4,294,967,295条)或发布订阅存储模式;

Redis做ELK缓冲队列的优化:

bind 0.0.0.0 #不要监听本地端口;

requirepass ilinux.io #加密码,为了安全运行;
只做队列,没必要持久存储,把所有持久化功能关掉:
快照(RDB文件)和追加式文件(AOF文件),性能更好;
save "" 禁用快照;
appendonly no 关闭RDB。
把内存的淘汰策略关掉,把内存空间最大
maxmemory 0 #maxmemory为0的时候表示我们对Redis的内存使用没有限制。

5、Elasticsearch节点优化配置

服务器硬件配置,OS参数:

1)/etc/sysctl.conf 配置

vim /etc/sysctl.conf

① vm.swappiness = 1

#ES 推荐将此参数设置为 1,大幅降低 swap 分区的大小,强制最大程度的使用内存,注意,这里不要设置为 0, 这会很可能会造成 OOM

② net.core.somaxconn = 65535

#定义了每个端口最大的监听队列的长度

③ vm.max_map_count= 262144

#限制一个进程可以拥有的VMA(虚拟内存区域)的数量。虚拟内存区域是一个连续的虚拟地址空间区域。当VMA 的数量超过这个值,OOM

④ fs.file-max = 518144

#设置 Linux 内核分配的文件句柄的最大数量

[root@elasticsearch]# sysctl -p生效一下。

2)limits.conf 配置

vim /etc/security/limits.conf
elasticsearch soft nofile 65535
elasticsearch hard nofile 65535
elasticsearch soft memlock unlimited
elasticsearch hard memlock unlimited

3)为了使以上参数永久生效,还要设置两个地方:

vim /etc/pam.d/common-session-noninteractive

vim /etc/pam.d/common-session

添加如下属性:

session required pam_limits.so

可能需重启后生效。

Elasticsearch中的JVM配置文件

-Xms2g

-Xmx2g

将最小堆大小(Xms)和最大堆大小(Xmx)设置为彼此相等。

Elasticsearch可用的堆越多,可用于缓存的内存就越多。但请注意,太多的堆可能会使您长时间垃圾收集暂停。
设置Xmx为不超过物理RAM的50%,以确保有足够的物理内存留给内核文件系统缓存。
不要设置Xmx为JVM用于压缩对象指针的临界值以上;确切的截止值有所不同,但接近32 GB。不要超过32G,如果空间大,多跑几个实例,不要让一个实例太大内存。

Elasticsearch配置文件优化参数:

vim elasticsearch.yml

bootstrap.memory_lock: true

#锁住内存,不使用swap

#缓存、线程等优化如下

bootstrap.mlockall: true
transport.tcp.compress: true
indices.fielddata.cache.size: 40%
indices.cache.filter.size: 30%
indices.cache.filter.terms.size: 1024mb
threadpool:
search:
type: cached
size: 100
queue_size: 2000
2)设置环境变量

vim /etc/profile.d/elasticsearch.sh export ES_HE AP _SIZE=2g #Heap Size不超过物理内存的一半,且小于32G。

集群的优化(我未使用集群):

ES是分布式存储,当设置同样的cluster.name后会自动发现并加入集群;

集群会自动选举一个master,当master宕机后重新选举;
为防止"脑裂",集群中个数最好为奇数个;
为有效管理节点,可关闭广播discovery. zen.ping.multicast.enabled: false,并设置单播节点组discovery.zen.ping.unicast.hosts: ["ip1", "ip2", "ip3"]。

6、性能的检查

检查输入和输出的性能:

Logstash和其连接的服务运行速度一致,它可以和输入、输出的速度一样快。

检查系统参数:

1)CPU

注意CPU是否过载。在Linux/Unix系统中可以使用top-H查看进程参数以及总计。

如果CPU使用过高,直接跳到检查JVM堆的章节并检查Logstash worker设置。

2)Memory

注意Logstash是运行在Java虚拟机中的,所以它只会用到你分配给它的最大内存。

检查其他应用使用大量内存的情况,这将造成Logstash使用硬盘swap,这种情况会在应用占用内存超出物理内存范围时。

3)I/O监控磁盘I/O检查磁盘饱和度

使用Logstash plugin(例如使用文件输出)磁盘会发生饱和。

当发生大量错误,Logstash生成大量错误日志时磁盘也会发生饱和。
在Linux中,可使用iostat,dstat或者其他命令监控磁盘I/O。

4)监控网络I/O

当使用大量网络操作的input、output时,会导致网络饱和。

在Linux中可使用dstat或iftop监控网络情况。

检查JVM heap:

heap设置太小会导致CPU使用率过高,这是因为JVM的垃圾回收机制导致的。

一个快速检查该设置的方法是将heap设置为两倍大小然后检测性能改进。不要将heap设置超过物理内存大小,保留至少1G内存给操作系统和其他进程。
你可以使用类似jmap命令行或VisualVM更加精确的计算JVM heap。

如有更多优化方法,或是难点解决的方法,欢迎在留言区补充~

作者:alonghub

来源:

转载于:https://blog.51cto.com/weimouren/2386014

你可能感兴趣的文章
UML类图简明教程
查看>>
java反编译工具(Java Decompiler)
查看>>
Android开发之自定义对话框
查看>>
微信Access Token 缓存方法
查看>>
Eclipsed的SVN插件不能识别之前工作空间的项目
查看>>
Linux 查看iptables状态-重启
查看>>
amazeui学习笔记一(开始使用2)--布局示例layouts
查看>>
c#中lock的使用(用于预约超出限额的流程)
查看>>
ODI基于源表时间戳字段获取增量数据
查看>>
并发容器之CopyOnWriteArrayList(转载)
查看>>
什么是AAC音频格式 AAC-LC 和 AAC-HE的区别是什么
查看>>
原创:goldengate从11.2升级到12.1.2
查看>>
Quartz
查看>>
正则表达式的语法规则
查看>>
C#一个关于委托和事件通俗易懂的例子
查看>>
类似于SVN的文档内容差异对比工具winmerge
查看>>
Cause: java.sql.SQLException: The user specified as a definer ('root'@'%') does not exist
查看>>
quratz线程
查看>>
execnet: rapid multi-Python deployment
查看>>
windows修改3389端口
查看>>